Course NO    : EM201
Course Title  : Mathematics III
Credits          : 3
Prerequisite  : None

 

Course Content Time Allocated
L T P A
 
DIFFERENTIAL EQUATIONS
   Introduction
  • Different types of DEs and solutions
1
     
  Modelling with Differential Equations
  • Applications in geometry and physical systems
2
1    
  First Order Differential Equations
Solutions methods
  • Variable separable
  • Exact equations
  • Linear differential equations
  • Reducible forms
3 2
   
  Constant Coefficient Linear Differential Equations
     Homogeneous Equations; Complementary Solutions
  • First order, second order and higher order equations

     Inhomogeneous Equations; Particular Integral
  • Trial solutions (undermined coefficients)
  • Variation of parameters
  • D-operators
4 3    
  Solutions in Series – Introduction

2  1    
  Laplace Transformation
  • Definitions and standard theorems
  • Inverse Transformation
  • Using in solving ODEs
  • Converting PDEs to ODEs
4 2    
  System of Ordinary Differential Equations
  • State space representation
  • Eigenvalue methods
2
1


   Numerical Solutions to ODE
  • Eular methods
  • Runge Kutta methods
  • Variable (Adaptive) step size algorithms
2 1    
 
PROBABILITY
  Introduction
  • Descriptive statistics
1      
  Concept of Probability
  • Conditional probability and independence, Random variables,Probability functions, Mathematical expectation, Moment generating functions, Joint, Marginal and Conditional distributions
7 2    
  Discrete probability distributions
  • Bernoulli (Point binomial) distribution. Binomial distribution, Poisson Distribution, Geometric distribution, Hyper geometric distribution, Multinomial distribution
2 2    
  Total = 30 + 15 = 45 30 15
   



 
Assessment Percentage Mark
Continuous Assessment   10
Assignment 10  
Course work    
Written Examinations   90
Mid-Semester 30  
End of Semester 60  

Notation Used :
L - Lectures
T - Tutorials
P - Practical works
A - Assignments

 

<top>